SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
نویسندگان
چکیده
Independent component analysis (ICA) has been widely used in functional magnetic resonance imaging (fMRI) data to evaluate the functional connectivity, which assumes that the sources of functional networks are statistically independent. Recently, many researchers have demonstrated that sparsity is an effective assumption for fMRI signal separation. In this research, we present a sparse approximation coefficient-based ICA (SACICA) model to analyse fMRI data, which is a promising combination model of sparse features and an ICA technique. The SACICA method consists of three procedures. The wavelet packet decomposition procedure, which decomposes the fMRI data into wavelet tree nodes with different degrees of sparsity, is first. Then, the sparse approximation coefficients set formation procedure, in which an effective Lp norm is proposed to measure the sparse degree of the distinct wavelet tree nodes, is second. The ICA decomposition and reconstruction procedure, which utilises the sparse approximation coefficients set of the fMRI data, is last. The hybrid data experimental results demonstrated that the SACICA method exhibited the stronger spatial source reconstruction ability with respect to the unsmoothed fMRI data and better detection sensitivity of the functional signal on the smoothed fMRI data than the FastICA method. Furthermore, task-related experiments also revealed that SACICA was not only effective in discovering the functional networks but also exhibited a better detection sensitivity of the visual-related functional signal. In addition, the SACICA combined with Fast-FENICA proposed by Wang et al. (2012) was demonstrated to conduct the group analysis effectively on the resting-state data set.
منابع مشابه
Iterative Dual-Regression with Sparse Prior to Estimate Individual Neuronal Activations from Group Functional Magnetic Resonance Imaging (fMRI) Data
An iterative dual-regression (DR) with a sparse prior was proposed to estimate individual neuronal activations from an ICA application to a group functional magnetic resonance imaging (fMRI) data. Compared to an original DR with two steps of least-squares to estimate both spatial and temporal patterns, our approach showed enhanced true positive rates while reducing false positive rates across a...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملSoftware Tools for the Analysis of Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. ...
متن کاملEvaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 216 1 شماره
صفحات -
تاریخ انتشار 2013